If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3=83
We move all terms to the left:
x^2+3-(83)=0
We add all the numbers together, and all the variables
x^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| (17x-1)-(14x-4)=21 | | -4y-11=9y+15 | | 3/2=w-7/2 | | -10+x/4=-8 | | 13k=25 | | -5(-5x+3)-5x-5=-50 | | (x)=(40)(60-2x)+2x | | -5(3x+4)+7=107 | | 60x+3x+x=180 | | 8(x+1)-9=6x+2(2+x) | | .5x+3=2x-3 | | 83=u^2+3 | | 3(2x+5)=-42+45 | | X+6/3=x-2/2 | | -5(-9+x)=105 | | 7+2m=13 | | -5/9=2/3y-1/3 | | f(-8)=6(1-8) | | 2(y-9)=45 | | 3n+75=3(-6n-5) | | 3x+7+9x+1=180 | | -9+w=4 | | -5(2x-7)=2(x-15)-78 | | -8(x)=6(1-x) | | 4(2x4)-5x+4=30 | | -91=-7(1+2x) | | 8×a=40 | | 3mm=7.3 | | 96+3x=-6144 | | 6x+4=3x17 | | 12=2+6x-6 | | 4x+10=-2x+5 |